The phospho-occupancy of an atypical SLIMB-binding site on PERIOD that is phosphorylated by DOUBLETIME controls the pace of the clock.
نویسندگان
چکیده
A common feature of animal circadian clocks is the progressive phosphorylation of PERIOD (PER) proteins, which is highly dependent on casein kinase Idelta/epsilon (CKIdelta/epsilon; termed DOUBLETIME [DBT] in Drosophila) and ultimately leads to the rapid degradation of hyperphosphorylated isoforms via a mechanism involving the F-box protein, beta-TrCP (SLIMB in Drosophila). Here we use the Drosophila melanogaster model system, and show that a key step in controlling the speed of the clock is phosphorylation of an N-terminal Ser (S47) by DBT, which collaborates with other nearby phosphorylated residues to generate a high-affinity atypical SLIMB-binding site on PER. DBT-dependent increases in the phospho-occupancy of S47 are temporally gated, dependent on the centrally located DBT docking site on PER and partially counterbalanced by protein phosphatase activity. We propose that the gradual DBT-mediated phosphorylation of a nonconsensus SLIMB-binding site establishes a temporal threshold for when in a daily cycle the majority of PER proteins are tagged for rapid degradation. Surprisingly, most of the hyperphosphorylation is unrelated to direct effects on PER stability. We also use mass spectrometry to map phosphorylation sites on PER, leading to the identification of a number of "phospho-clusters" that explain several of the classic per mutants.
منابع مشابه
NEMO/NLK Phosphorylates PERIOD to Initiate a Time-Delay Phosphorylation Circuit that Sets Circadian Clock Speed
The speed of circadian clocks in animals is tightly linked to complex phosphorylation programs that drive daily cycles in the levels of PERIOD (PER) proteins. Using Drosophila, we identify a time-delay circuit based on hierarchical phosphorylation that controls the daily downswing in PER abundance. Phosphorylation by the NEMO/NLK kinase at the "per-short" domain on PER stimulates phosphorylatio...
متن کاملIdentification of Light-Sensitive Phosphorylation Sites on PERIOD That Regulate the Pace of Circadian Rhythms in Drosophila.
The main components regulating the pace of circadian (≅24 h) clocks in animals are PERIOD (PER) proteins, transcriptional regulators that undergo daily changes in levels and nuclear accumulation by means of complex multisite phosphorylation programs. In the present study, we investigated the function of two phosphorylation sites, at Ser826 and Ser828, located in a putative nuclear localization ...
متن کاملSCFbeta-TRCP controls clock-dependent transcription via casein kinase 1-dependent degradation of the mammalian period-1 (Per1) protein.
Circadian rhythms are controlled by the periodic accumulation of Period proteins, which act as transcriptional repressors of Clock-dependent genes. Period genes are themselves Clock targets, thereby establishing a negative transcriptional feedback circuit controlling circadian periodicity. Previous data have implicated the CK1epsilon isolog Doubletime (Dbt) and the F-box protein Slimb in the re...
متن کاملNoncanonical FK506-Binding Protein BDBT Binds DBT to Enhance Its Circadian Function and Forms Foci at Night
The kinase DOUBLETIME is a master regulator of the Drosophila circadian clock, yet the mechanisms regulating its activity remain unclear. A proteomic analysis of DOUBLETIME interactors led to the identification of an unstudied protein designated CG17282. RNAi-mediated knockdown of CG17282 produced behavioral arrhythmicity and long periods and high levels of hypophosphorylated nuclear PERIOD and...
متن کاملO-13: Phosphorylation of 4E-BP1 Promotes Translation at The Oocyte Spindle
Background: Fully grown mammalian oocyte utilizes transcripts synthetized and stored during earlier development. In the mouse oocyte there are three forms of cap-dependent translational repressors: 4E-BP1, 4E-BP2, and 4E-BP3. The dominant form, 4E-BP1, inhibits cap-dependent translation by binding to the eIF4E translation initiation factor. Hyperphosphorylation of 4E-BP1 disrupts this inhibitor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genes & development
دوره 22 13 شماره
صفحات -
تاریخ انتشار 2008